STRUCTURES OF ISOECHINULINS A, B AND C,
NEW INDOLE METABOLITES FROM ASPERGILLUS RUBER

Hiromichi Nagasawa, Akira Isogai, Akinori Suzuki and Saburo Tamura Department of Agricultural Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

(Received in Japan 11 March 1976; received in UK for publication 29 March 1976)

In the course of a continuing search for indole metabolites in mycelia of $Asp.\ ruber$, three new compounds named isoechinulin A, B and C were isolated and characterized. Based on the chemical and physicochemical evidences, the structures of these compounds have been established as $\underline{1}$, $\underline{2}$ and $\underline{3}$, respectively. Accordingly, the structure $\underline{1a}$ preliminarily assigned to isoechinulin A^{1}) should be revised to $\underline{1}$.

$$R_1$$
 R_2
 R_1
 R_2
 R_3
 R_4
 R_4
 R_5
 R_4
 R_5
 R_5
 R_6
 R_7
 R_8
 R_8

The physicochemical data of isoechinulin A (IA) are as follows. MS m/e : 391.2262 (M^+ , $\text{C}_{24}\text{H}_{29}\text{N}_3\text{O}_2$; calcd. 391.2258), 322 ($\text{M-C}_5\text{H}_9$). NMR (in CD_3COCD_3) δ : 10.21 (1H, broad s, -NH-), 7.92 (1H, broad s,

1602 No. 19

-NH-), 7.53 (1H, broad s, -NH-), 7.34 (1H, d, J= 8.2 Hz), 7.15 (1H, s), 7.10 (1H, d, J= 1.7 Hz), 6.99 (1H, dd, J= 8.2 Hz and 1.7 Hz), 6.16 (1H, dd, J= 17.8 Hz and 10.5 Hz, -CH=CH₂), 5.38 (1H, broad t, J= 7.1 Hz, -CH=C-), 5.13 (1H, dd, J= 10.5 Hz and 1.0 Hz; 1H, dd, J= 17.8 Hz and 1.0 Hz, -CH=CH₂), 4.28 (1H, q, J= 6.9Hz, -CH-CH₃), 3.40 (2H, d, J= 7.1 Hz, Ar-CH₂-), 1.71 (6H, s, -C=C(CH₃)₂), 1.55 (3H, d, J= 6.9 Hz, -CH-CH₃; 6H, s, -C(CH₃)₂-). IR $\nu_{\rm max}^{\rm Film}$ cm⁻¹: 3260 (N-H), 1675 (amide C=0), 1633 (C=C). UV $\lambda_{\rm max}^{\rm EtOH}$ nm (ε): 227 (31,500), 289 (8900), 341 (9400).

Catalytic hydrogenation of IA over PtO₂ in acetic acid gave tetrahydro derivative ($\frac{4}{2}$). MS m/e: 395 (M⁺), 366, 338, 324. In the NMR spectrum of $\frac{4}{2}$, signals at δ 6.16, 5.38 and 5.13 in IA were unobserved. Appearance of new signals at δ 0.76 (3H, t) and 0.91 (6H, d) indicated the occurrence of saturation at two isoprene substituents in IA. Oxidative degradation of $\frac{4}{2}$ with hydrogen peroxide in acetic acid at room temperature, followed by methylation with diazomethane, afforded $\frac{5}{2}$ as a colorless oil after purification by preparative TLC. MS m/e: 319 (M⁺), 262, 248, 221, 216, 164, 71. IR $\nu_{\text{max}}^{\text{Film}}$ cm⁻¹: 3230 (N-H), 1685 (aromatic ester C=0 and amide C=0), 1520 (amide N-H), 1273 (ester C-O). NMR (in CCl₄) δ : 10.05 (1H, broad s, -NH-), 8.71 (1H, d, J= 8.9 Hz), 7.73 (1H, d, J= 2.5 Hz), 7.32 (1H, dd, J= 8.9 Hz and 2.5 Hz), 3.90 (3H, s, -COOCH₃), 2.55 (2H, t, J= 7.6 Hz,

 $\underline{5}$: R = CO

 $\underline{6}: \mathbf{R} = \mathbf{H}$

7: R = COCH₃

Ar- $C\underline{H}_2$ - CH_2 -), 1.8-1.3 (5H, m), 1.25 (6H, s, - $C(C\underline{H}_3)_2$ -), 0.93 (6H, d, J= 6.4 Hz, - $CH(C\underline{H}_3)_2$), 0.88 (3H, t, J= 7.9 Hz, - CH_2 - $C\underline{H}_3$).

Hydrolysis of $\underline{5}$ with hydrochloric acid in methanol under reflux gave $\underline{6}$. MS m/e: 221 (\underline{M}^+), 190, 164, 132. NMR spectrum (in CDCl $_3$) of $\underline{6}$ showed signals due to aromatic protons at δ 7.65 (1H, d, J= 2 Hz), 7.12 (1H, dd, J= 7.8 Hz and 2 Hz) and 6.62 (1H, d, J= 7.8 Hz). Signals at δ 2.49 (2H, t, J= 8.0 Hz), 1.8-1.2 (3H, m) and

Table 1

Compound	Chemical shifts of aromatic protons (coupling constants)	Solvent
5	8.71 (8.9), 7.73 (2.5), 7.32 (8.9, 2.5)	CC1 ₄
<u>6</u>	6.62 (7.8), 7.65 (2), 7.12 (7.8, 2)	CDC1 ₃
<u>7</u>	8.60 (7.5), 7.82 (2), 7.37 (7.5, 2)	CDC1 ₃
<u>8</u> .	6.43 (9), 6.97 (2), 7.54 (9, 2)	CC14
9	8.57 (8.4), 7.71 (2), 7.26 (8.4, 2)	CC1 ₄

0.92 (6H, d, J= 5.8 Hz) suggested the presence of Ar-CH₂-CH₂-CH(CH₃)₂ moiety. Thus, $\underline{6}$ was determined as methyl anthranilate with a 3-methylbutyl group at C-4 or -5 and, consequently, $\underline{5}$ as N-(2,2-dimethylbutyryl) derivative of $\underline{6}$.

N-Acetylation of $\underline{6}$ with acetic anhydride-pyridine gave $\underline{7}$. MS m/e: 263 (\underline{M}^+), 232, 221, 206, 164, 132. This treatment caused a remarkable downfield shift (from δ 6.62 to δ 8.60) in one of the signals due to three aromatic protons in the NMR spectrum of $\underline{6}$, suggesting that this aromatic proton in $\underline{6}$ should be located at C-3 adjacent to the acetylamino group $\underline{^2}$). Accordingly, the location of the 3-methylbutyl group was determined at C-5 in $\underline{5}$, $\underline{6}$ and $\underline{7}$. This conclusion was further supported by the NMR spectra of methyl 5-methyl anthranilate ($\underline{8}$) and its N-acetyl derivative ($\underline{9}$), which were derived from 5-methylindole (commercially available) in the same procedure. These data showing the chemical shifts of aromatic protons in $\underline{5}$ - $\underline{9}$ are listed in Table 1.

The following data were obtained for isoechinulin B (IB). MS m/e : 389.2137 (M^+ , $C_{24}H_{27}N_3O_2$: calcd. 389.2102), 320 ($M^-C_5H_9$). NMR (in CD_3COCD_3) δ : 10.23 (1H, broad s), 9.80 (1H, broad s), 8.08 (1H, broad s), 7.30 (1H, d, $J^=$ 8.2 Hz), $7.2^-7.0$ (2H, broad s), 6.96 (1H, broad d, $J^=$ 8.2 Hz), 5.13 (1H, dd, $J^=$ 18.0 Hz and 10.5 Hz), $5.4^-5.0$ (5H, m), 3.38 (2H, d, $J^=$ 8.0 Hz), 1.68 (6H, s), 1.54 (6H, s). IR v_{max}^{Film} cm⁻¹ : 3310, 1678, 1643. UV v_{max}^{MeOH} nm (v_{max}^{EOH} nm ($v_{$

derivative which was identical with the tetrahyrdo derivative of IA ($\frac{4}{}$) in the IR, MS, UV and NMR spectra. Thus, the structure of IB was determined as $\frac{2}{}$.

The molecular formula of isoechinulin C (IC) was assigned as $C_{24}H_{27}N_3O_3$ by high resolution mass spectrometry (m/e 405.2108 : calcd. 405.2051). MS m/e: 405 (M⁺), 336 (M-C₅H₉), 334 (M-C₄H₇O). NMR (in CD₃COCD₃) & : 10.21 (1H, broad s), 9.73 (1H, broad s), 8.12 (1H, broad s), 7.31 (1H, d, J= 8.2 Hz), 7.20 (1H, broad s), 7.07 (1H, s), 7.02 (1H, broad d, J= 8.2 Hz), 6.11 (1H, dd, J= 17.7 Hz and 10.6 Hz), 5.34 (1H, s), 5.08 (1H, d, J= 17.7 Hz), 5.05 (1H, d, J= 10.6 Hz), 5.00 (1H, s), 3.1-2.7 (3H, m), 1.56 (6H, s), 1.33 (3H, s), 1.22 (3H, s). IR $\nu_{\rm max}^{\rm Film}$ cm⁻¹ : 3250, 1676, 1644. UV $\lambda_{\rm max}^{\rm MeOH}$ nm (ϵ) : 229 (26,700), 272 (18,000), 286 sh (15,800), 371 (9700). Treatment of IB with m-chloroperbenzoic acid in chloroform at room temperature afforded a mixture of IC and its stereoisomer at a ratio of ca. 3 : 1 (observed in the NMR spectrum). The MS and IR spectra of the mixture showed sufficient identity with those of IC. Accordingly the structure of IC was established as 3.

References

- 1. H. Nagasawa, A. Isogai, K. Ikeda, S. Sato, S. Murakoshi, A. Suzuki and S. Tamura, Agr. Biol. Chem., 39, 1901 (1975).
- 2. B. D. Andrews, I. D. Rae and B. E. Reichart, Tetrahedron Letters, 1969, 1859.